Deep-sea and pelagic rod visual pigments identified in the mysticete whales.

نویسندگان

  • Nicole Bischoff
  • Benjamin Nickle
  • Thomas W Cronin
  • Stephani Velasquez
  • Jeffry I Fasick
چکیده

Our current understanding of the spectral sensitivities of the mysticete whale rod-based visual pigments is based on two species, the gray whale (Eschrichtius robustus) and the humpback whale (Megaptera novaeangliae) possessing absorbance maxima determined from difference spectra to be 492 and 497 nm, respectively. These absorbance maxima values are blueshifted relative to those from typical terrestrial mammals (≈500 nm) but are redshifted when compared to those identified in the odontocetes (479-484 nm). Although these mysticete species represent two of the four mysticete families, they do not fully represent the mysticete whales in terms of foraging strategy and underwater photic environments where foraging occurs. In order to better understand the spectral sensitivities of the mysticete whale rod visual pigments, we have examined the rod opsin genes from 11 mysticete species and their associated amino acid substitutions. Based on the amino acids occurring at positions 83, 292, and 299 along with the directly determined dark spectra from expressed odontocete and mysticete rod visual pigments, we have determined that the majority of mysticete whales possess deep-sea and pelagic like rod visual pigments with absorbance maxima between 479 and 484 nm. Finally, we have defined the five amino acid substitution events that determine the resulting absorbance spectra and associated absorbance maxima for the mysticete whale rod visual pigments examined here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptations of Cetacean Retinal Pigments to Aquatic Environments

The underwater environment places unique constraints on the vision of cetaceans compared to their terrestrial mammalian counterparts. Water absorbs and filters light affecting both the intensity and spectral distribution of light available for vision. Therefore, the aquatic environment restricts the spectral distribution of photons and limits the distance at which objects may be observed. The c...

متن کامل

The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments.

The effect of hydrostatic pressure (0.1-54 MPa, equivalent to pressures experienced by fish from the ocean's surface to depths of ca. 5,400 m) on visual pigment absorption spectra was investigated for rod visual pigments extracted from the retinae of 12 species of deep-sea fish of diverse phylogeny and habitat. The wavelength of peak absorption (lambda(max)) was shifted to longer wavelengths by...

متن کامل

The molecular basis for spectral tuning of rod visual pigments in deep-sea fish.

Most species of deep-sea fish possess of a rod-only retina with a pigment that is generally shortwave shifted in lambda(max) towards the blue region of the spectrum. In addition, the lambda(max) values of different species tend to cluster at particular points in the spectrum. In this study, the rod opsin gene sequences from 28 deep-sea fish species drawn from seven different Orders are compared...

متن کامل

Sea Turtle and Pelagic Fish Sensory Biology: Developing Techniques to Reduce Sea Turtle Bycatch in Longline Fisheries

submitted to the 25 Symposium on Sea Turtle Biology and Conservation. Night-time spectral sensitivity of adult female leatherback sea turtles Levenson, D.H., Eckert, S.A. Crognale, M.A., Duhamel, P., Kubis, S.A. and Harms, C.A. Flicker electroretinography (ERG) was used to measure the spectral sensitivity of adult female leatherback sea turtles in vivo on a nesting beach on the southern Caribbe...

متن کامل

Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks

The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Visual neuroscience

دوره 29 2  شماره 

صفحات  -

تاریخ انتشار 2012